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Abstract

Objective—We describe the development, implementation, and evaluation of a model to 

preemptively select patients for genotyping based on medication exposure risk.

Study Design and Setting—Using de-identified electronic health records (EHR), we derived a 

prognostic model for the prescription of statins, warfarin, or clopidogrel. The model was 

implemented into a clinical decision support (CDS) tool to recommend preemptive genotyping for 

patients exceeding a prescription risk threshold. We evaluated the rule on an independent 

validation cohort, and on an implementation cohort, representing the population in which the CDS 

tool was deployed.
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Results—The model exhibited moderate discrimination with area under the receiver operator 

characteristic curves ranging from 0.68 to 0.75 at one and two years following index dates. Risk 

estimates tended to underestimate true risk. The cumulative incidences of medication prescriptions 

at one and two years were 0.35 and 0.48, respectively, among 1673 patients flagged by the model. 

The cumulative incidences in the same number of randomly sampled subjects were 0.12 and 0.19, 

and in patients over 50 years with the highest body mass indices, they were 0.22 and 0.34.

Conclusion—We demonstrate that prognostic algorithms can guide preemptive 

pharmacogenetic testing towards those likely to benefit from it.
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INTRODUCTION

A growing body of literature relates human genetic variation to drug response. Currently, 

more than 100 drugs have pharmacogenomic (PGx) information that affects prescribing in 

Food and Drug Administration (FDA) labels 1. Such evidence was the impetus behind 

Vanderbilt University Medical Center’s Pharmacogenomic Resource for Enhanced 

Decisions in Care & Treatment (PREDICT) program, a quality improvement initiative 

utilizing preemptive, panel-based genotyping to deliver genotype-tailored prescribing 

guidance at the point of care 2.

Previously, we observed the potential for pharmacogenomic testing efficiency gains by 

using a multiplexed genotyping approach. Such gains are possible due to the sufficiently 

high fraction of patients prescribed multiple PGx medications 3. In a cohort of 53,000 

medical home patients at our institution, we estimated, over a 5 year period, approximately 

65% of patients would be prescribed at least one medication with an FDA PGx label, and 

40% would be prescribed multiple PGx medications. Presently, the panel-based genotyping 

platform used for PREDICT covers 184 functional polymorphisms on 34 genes 2, and 

genetic test results are coupled with computerized decision support (CDS) to guide 

prescribers toward the genetically-tailored medications 4.

Ideally, patients could be prescribed genetically-tailored therapy without delay. Towards this 

aim, we sought a predictive model to identify patients likely to be prescribed a therapy that 

would benefit from preemptively recorded genomic information in the electronic health 

record (EHR). Our model identified subjects who were at high risk for being prescribed a 

statin, clopidogrel, or warfarin (medications implemented in PREDICT) over three years. 

See the Clinical Pharmcogenetics Implementation Consortium5 guidelines and webpage 

(https://www.pharmgkb.org/page/cpic) for our rationale for choosing these medications. We 

implemented the model into a CDS tool that alerted physicians if a patient was at high risk 

for being prescribed one of these medications. In this way, individuals could have genetic 

information embedded in their EHR before a prescribing event occurs and could be directed 

towards modified therapy (if necessary) by appropriate CDS. We then examined the model’s 

performance in two, overlapping validation cohorts by calculating the extent to which the 
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model enriched genotyped patients with those eventually be prescribed one of the 

medications. In this report, we describe our approach to model construction, some 

considerations for CDS implementation, and the model’s performance as an initial approach 

for prospective, personalized medicine.

This work is an initial step towards understanding the challenges, considerations, and 

potential for using readily available EHR data towards model driven CDS systems that guide 

patient treatment.

MATERIALS AND METHODS

We developed a predictive model using training data abstracted from EHRs recorded 

between January 1, 2005 and June 30, 2010. We validated this model in two cohorts of 

patients establishing longitudinal care between July 1, 2010 and March 31, 2013.

Study Cohorts

Training cohort—We selected patient records from the Vanderbilt Synthetic Derivative 

(SD) 6 and restricted the analysis to patients who met a definition for Vanderbilt University 

Medical Center as being their ‘medical home’ (MH) between January 1, 2005 and June 30, 

2010, using the definition of having at least three outpatient clinic visits within a two-year 

timeframe. Eligible clinics included: internal medicine and ten subspecialties: cancer, 

hematology, hypertension, rheumatology, nephrology, cardiology, diabetes, neurology, 

nutrition and pulmonary medicine. To be included, we required a patient age, height, and 

weight to be present in the medical record on or before the MH designation date, as this 

served as a marker of having a visit outside of the acute care clinic. Patients were also 

required to have no evidence of statin, warfarin, and clopidogrel prior to the MH date (via 

either electronic prescribing tools or natural language processing 7) so that the prescriptions 

represented new therapy decisions within the EHR. Patients were then followed until their 

last observation prior to June 30, 2010.

Validation and Implementation cohorts—The validation cohort inclusion criteria 

were identical to the training dataset except that patients must have met MH criteria for the 

first time between July 1, 2010 and March 31, 2013. Patients were then followed until their 

last documented clinical encounter prior to March 31, 2013. The implementation cohort 

inclusion criteria were the same as the validation cohort except at the following clinics: 

internal medicine, cardiology, hypertension, diabetes, anticoagulation, ophthalmology, 

nephrology, renal transplant and urology. While several of the clinics between the validation 

and implementation cohort overlapped, many were different and far more were included in 

the implementation cohort due to ongoing reorganization of clinic services and PREDICT.

Model construction strategy

We constructed a predictive model based on clinical variables that were readily available in 

the EHR and coded in a consistent form so it could be easily deployed in a CDS tool. 

Because follow-up times were variable, we used a Cox proportional hazards regression8 to 

model the time to a statin, clopidogrel, or warfarin prescription from the MH date, and in so 
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doing, we were able to estimate medication exposure risk in the presence of censoring. We 

used the following independent variables: age, gender, BMI, and race, weight, height, and 

chronic medical comorbidities (type 2 diabetes, coronary artery disease, atrial fibrillation, 

hypertension, atherosclerosis, congestive heart failure, previous blood clot, and dialysis). All 

comorbidities were determined based on ICD-9 codes prior to the MH date, and two codes 

instantiated a diagnosis 9. Continuous covariate effects were modeled with restricted cubic 

splines to capture non-linear relationships. To examine internal validity, we used a non-

parametric bootstrap10,11.

Evaluation on validation and implementation datasets

To evaluate model performance, we applied training set model results to baseline data 

(applied once at each patient’s MH date) and longitudinal data (applied at each clinic visit 

when covariate data changed) for the validation and implementation sets. Though the 

training set model was constructed with information available at the MH date (i.e., a static 

model), the longitudinal data reflect implementation in practice where each encounter 

represented an opportunity for genotyping. We used a derived, residual time scale to 

translate the static model results to the dynamic longitudinal data 12,13. See Appendix A.1 

for predicted risk calculations from a Cox model and A.2 for residual time scale 

calculations. Time-dependent, area under the ROC curve, AUROC(t), was used to quantify 

model discrimination, and model calibration was assessed graphically. Analyses were 

performed with the R programming language 14, specifically rms() 15 and survivalROC() 16 

libraries.

Enrichment of the genotyped population

We examined the extent to which a real-time algorithm enriched genotyped patients with 

those eventually prescribed a target medication during follow-up. For the baseline validation 

and implementation data sets, we identified patients that exceeded 40% risk of a target drug 

prescription within three years. For the longitudinal datasets, we identified patients who 

exceeded 40% risk at least once within three years from baseline. The 40% risk target was 

set as the clinical target by the PREDICT team early in the program. We then calculated the 

cumulative incidence of a medication prescription during the two years following the MH 

date to estimate time-specific, positive predictive values (PPVs) through two years 

following the MH date. To capture enrichment, we took the difference between model-based 

PPVs and PPVs based on 1) random sampling and 2) applying a rule that flags those over 50 

years with the highest BMIs. According to the estimated Cox model baseline hazard, 40% 

risk at three years translates to 16.5% and 28% risk at one and two years, respectively.

RESULTS

Demographic and other characteristics of the training, validation, and implementation 

cohorts are shown in Table 1. There were a total of 16020 patients in the training dataset and 

12794, 18950, and 6647 patients in the validation, implementation, and both validation and 

implementation datasets, respectively. Importantly, since there was a longer observation 

period for the training dataset than for the other two datasets, observed follow-up was longer 

(median = 1182 days versus 361 and 316 days) and the probability of being prescribed a 
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target medication during follow-up was higher (23.6% versus 9.6% and 11.5%). Patients in 

the training dataset tended to be older (median=51 years) and to have higher rates type 2 

diabetes (17.8%), coronary artery disease (CAD; 4.3%), and atherosclerosis (8.1%) at 

baseline than those in the other two sets; however, they also had a low rate of atrial 

fibrillation (0.1%), presumably reflecting the fact that patients who had been prescribed 

warfarin by the time of the MH date were not included in analyses. Disease prevalence in 

the validation cohorts increased during the observation time as shown in square brackets. 

For example, in the implementation cohort, we observed 18950 patients at 61847 unique 

opportunities for genotyping. At baseline (end of follow-up), 8.1% (9.8%) had a Type II 

diabetes history.

Figure 1 shows the Kaplan-Meier plots using the baseline data for the three cohorts (left 

panel) and using the longitudinal data for the validation and implementation cohorts (right 

panel). Overall, the implementation cohort was prescribed medications at a higher rate than 

the training and validation cohorts, which is likely explained by including proportionately 

more high-risk clinics (e.g., cardiology). One-year prescription risk estimates were 0.088 

(95% CI: 0.083 – 0.093) for the training set, 0.090 (95% CI: 0.084, 0.096) and 0.118 (95% 

CI: 0.084 – 0.096) for the baseline validation and implementation sets, respectively, and 

0.103 (95% CI: 0.100 – 0.107) and 0.113 (95% CI: 0.110 – 0.116) for the longitudinal 

validation and implementation sets, respectively.

The fitted proportional hazards model from the training dataset is shown in figure 2. 

Covariate risk factors associated with higher rates of medication prescription included: older 

age, higher BMI, male gender, and history of type 2 diabetes, CAD, CHF and dialysis. The 

impact of age and BMI on the rate of medication prescription was clearly non-linear with 

larger effects at lower ages and BMI and much smaller effects at higher ages and BMI. 

Figure 2 also shows variable importance (VI) scores that are defined as the likelihood ratio 

Chi-square statistic minus the degrees of freedom17.

Using a non-parametric bootstrap approach, we observed that the overall AUROC for the 

training dataset model showed no evidence of model over-fitting with the estimated 

optimism being 0.01 and the corrected AUROC being 0.67. Applying the results from the 

training data model to the baseline validation, baseline implementation, longitudinal 

validation and longitudinal implementation datasets, we estimated AUROCs at the one-year 

to be 0.71, 0.75, 0.68, and 0.73, respectively. Figure 3 shows AUROCs as a function of the 

time since the MH date for baseline sets and time since the most recent clinic visit for 

longitudinal sets. Interestingly, the model constructed from the training dataset ordered 

subjects’ risk at least as well in the validation and implementation sets as it did in the 

training set. Thus, for the purposes of discrimination, the model exhibited strong external 

validity. We speculate on explanations in the Discussion.

Figure 4 shows the calibration curves for predicting risk at 365 and 730 days from the MH 

date (baseline data) or the most recent clinic visit (longitudinal data). Using the non-

parametric bootstrap on the training dataset model, we observed high internal validity (black 

lines). One-year model predictions performed reasonably well in the validation cohort; 

however, they were underestimated severely in the implementation cohort. For two-year risk 
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predictions, the training data model underestimated risks in both the validation and 

implementation cohorts.

For PREDICT, we deployed the training set model to flag those who were estimated to have 

at least a 40% risk of being prescribed a target medication within three years via CDS at 

outpatient clinics represented by the implementation set. Figure 5 shows the cumulative 

incidences of PGx medication prescriptions over the time since the MH date for the model-

based rule, for a random sampling rule, and the simple rule of ‘genotype patients who are 

over 50 years with the highest BMIs’. Using the longitudinal data for implemented 

PREDICT clinics (lower left panel), 1673 patients were identified for genotyping using the 

model-based rule. Among those, by one and two years following the MH date, the 

cumulative incidences for medication prescriptions were 0.35 and 0.48. With random 

sampling of the same number of patients, the cumulative incidences were 0.12 and 0.19, and 

flagging the 1673 highest BMIs among those over 50 years of age, yielded cumulative 

incidences of 0.22 and 0.34. In the absence of censoring we would therefore estimate that 

the pool of genotyped patients identified by the model would be enriched by 495 

(~1673*(0.484-0.188)) and 238 (~1673*(0.484-0.342)) compared to random sampling and 

the high age/high BMI rule, respectively. It is worth noting that at one year following the 

MH date, the sensitivity and specificity of the model-based decision rule was estimated to be 

0.23 and 0.93, respectively.

Training model portability

Software packages used for model construction are often different from those used to 

support CDS tools, and all analyses described here were conducted using the R 

programming language 18. Using this software, we were able to obtain and port to the 

implementation team the predicted risk at any timepoint t. However, because CDS does not 

use R and because the log survivor function, log[S(t;X)], contains non-parametric and 

parametric components, real-time standard error calculations were not feasible. 19 As a 

workaround, we fit a linear regression of the estimated value of log[SE{log[S(t;X)]}] on 

covariates X to obtain an easy to port estimate of standard errors. See Appendix for a 

description of our approach to validate this model. As can be seen in Figure 6, the model for 

the standard errors appears to reproduce extremely well with the median R2 across 25 

bootstrap replicates being 0.99. We were therefore able to port a simple standard error 

function that accurately estimates prediction uncertainty in real time.

DISCUSSION

We discussed development and implementation of a statistical model within a CDS tool to 

identify patients likely to receive target medications for prospective genotyping. In 

comparison to a strategy of randomly selecting patients to genotype, use of the predictive 

model was estimated to enrich the pool of 1673 patients identified for genotyping by 495 

patients over the course of two years (in the absence of censoring). Our model also 

outperformed a simpler strategy of using an age and BMI cutoff alone. The model ordered 

patient risk (using AUROC) at least as well in the validation and implementation datasets as 

it did in the training dataset. Though the training data model was well calibrated to the 

Schildcrout et al. Page 6

J Clin Epidemiol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



validation cohort at one year from the MH date (baseline analysis) and at one year from the 

most recent clinic visit (longitudinal analysis), it underestimated risk in the validation 

dataset at two years and it severely underestimated risk in the implementation cohort.

We speculate that the increase in AUROCs when applying the training set model to the 

validation and implementation sets was likely due to either of both of: 1) exposure/covariate 

data improving over time with less misclassification and measurement error, and 2) 

physicians unintentionally learning from the CDS tool and being more inclined to prescribed 

one of the medications once the CDS tool flags a patients for genotyping. We also speculate 

that the reason for the substantial underestimation of risk in the implementation cohort is 

due to deployment in specialty clinics where physicians are more inclined to prescribe one 

of the target medications (e.g., cardiology). We did not collect such clinic information at the 

outset of this project.

Given increased financial pressures on medicine, movement to a paradigm of predictive 

medicine may lead to improved outcomes and reduced costs. This project represents not 

only model development, but also its real-world application within an EHR. While 

significant efforts have been made with risk prediction models in research settings, few 

complex models have found their way into the EHR. Pharmacogenomics, genomics, and 

predictive medicine are enabled by EHRs but will likely also require their advancement 20.

The success of the PREDICT model relies on multiplexed genetic testing. Multiplexed, 

prospective testing will unnecessarily genotype some people but will also improve the 

probability that a relevant medication will be prescribed. Reactive single gene testing will 

miss people who could have benefitted from having their genetic data available in the EHR 

at the time of prescribing. It also leads to multiple tests being performed when multiple 

medications are prescribed. Indeed, a recent study within the PREDICT population (which 

includes patients selected by the prognostic algorithm) calculated that the number of total 

tests performed was 35% lower in PREDICT than if patients were reactively genotyped on a 

medication by medication basis 21.

This study has several limitations. We required that patients adhere to our definition of MH 

and have age, height, and weight information, which could inhibit generalizability of the 

results. To enable rapid calculation within a real-time EHR, we derived medication 

exposures and past diagnoses using readily-available EHR data which can suffer from 

missing information 22 and misclassification 23,24. While a growing body of work with 

secondary use of EHR data has shown the value of multimodal algorithms to define 

exposures 25–27, many of these algorithms would not be practical for real-time execution 

within most EHR systems. Additionally, patients included in these analyses may represent a 

sicker population due to the requirement of three outpatient clinic visits in a two-year time 

frame.

The model building and validation approach could have been improved in several ways. For 

example, we constructed a model for being prescribed one of three target medications that 

was dominated by statin prescriptions. Fitting separate models for the three indications and 

then combining risks into a single, weighted risk score to determine whom to genotype is an 
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alternative and more flexible approach. We used baseline data from the training dataset to 

predict risk in the longitudinal datasets. Risk predictions might have been improved if we 

had constructed the training model using longitudinal data. We could improve predictions if 

time trends were captured in the model and if we had used use specialty clinics (e.g., 

cardiology) as risk factors. We may also be able to improve predictions with more complex 

models (random forests), though such models may be challenging to implement within 

EHRs. Finally, it is very likely that the non-informative censoring assumption for the Cox 

model was violated during model construction; however such violations are likely to be 

reflected in validation summary measures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Medication-free survival: Kaplan-Meier based estimates of medication free survival. The 

left panel corresponds to baseline data obtained at the medical home date. The right panel 

corresponds to longitudinal data where the x-axis is the time since last participating clinic 

visit.
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Figure 2. 
The Cox proportional hazards model estimates from the training dataset based on data from 

2005 to 2010. We include a measure of variable importance (VI) that is defined as the 

likelihood ratio Chi-square statistic minus the degrees of freedom used to estimate the 

variable construct.
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Figure 3. 
Time-dependent AUROC(t) calculated by applying the training data model to the training 

dataset across bootstrap replicates (black line), and the training data model to the baseline 

and longitudinal validation and implementation datasets.
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Figure 4. 
Calibration plots for one- and two-year risk estimates. Estimates were calculated by 

applying the training set model to itself across bootstrap replicates and the resulting training 

set model to the validation and implementation datasets. Modified boxplots highlight the 1st, 

10th, 25th, 50th, 75th, 90th, and 99th percentiles of the predicted risk distributions.
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Figure 5. 
Cumulative proportion of pre-emptively genotyped patients prescribed target medications 

over time since the medical home date.
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Figure 6. 
Calibration plots for log-estimated standard error of the log-survivor function based on 25 

bootstrap replicate. The y-axis shows the log of the estimated standard error from the 

original dataset, and the x-axis shows the bootstrapped based predictions of those values.
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Table 1

Demographics and Patient Medical History for the Training, Validation and Implementation Datasets. 

Continuous variables are reported with the 50th (10th, 90th) percentiles and categorical variables are reported 

with percentages. Values inside square brackets correspond to the longitudinal follow-up data.

Variable Training Validation Implementation

N 16020 12794 [55344] 18950 [61847]

Baseline Age (years) 51 (29, 70) 48 (26, 68) 46 (26, 69)

Male 37.6 38.5 36.9

Race

 Black 13.8 11 10.5

 Other 3.1 4.5 4.8

 White 83.2 84.5 84.7

Baseline BMI (kg/m2) 28 (21, 39) 27 (21, 38) 27 (21, 38)

Follow-up (days) 1182 (148, 1720) 361 (47, 812) 316 (23, 774)

Diagnostic history

 Type II Diabetes 17.8 10.6 [12.8] 8.1 [9.8]

 CAD 4.3 1.3 [2.0] 2.9 [3.9]

 Atrial Fibrillation 0.1 1.4 [2.2] 3.6 [4.5]

 Hypertension 32.7 26.2 [31.9] 32.1 [37.3]

 Atherosclerosis 8.1 2.9 [4.2] 4.5 [6.1]

 Congestive Heart Failure 3.4 2.0 [2.5] 2.4 [3.1]

 Previous Clot 1.0 1.2 [2.2] 0.8 [1.2]

 Dialysis 0.7 0.5 [0.7] 1.3 [1.5]

Prescriptions after medical home date

 Statin 19.4 6.5 8.5

 Warfarin 5.0 3.6 3.7

 Clopidogrel 2.8 2.0 2.4

 Any Medication 23.4 9.6 1.5

All Kruskal –Wallis tests for differences in continuous variables at baseline and Chi-square tests for differences in categorical variables at baseline 
were significant at the 0.05 level, and all but gender and previous clot were significant at the 0.001 level.
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